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BREAKUP OF AN ANOMOLOUSLY VISCOUS LIQUID
FILM IN A CENTRIFUGAL FORCE FIELD

I.M. Nafikov and N. Kh. Zinnatullin UDC 532.135

An equation is obtained for the breakup radius with consideration of tipping moments and Lapla-
cian pressure forces acting on the liquid ridge at the critical point.

As is well known, in centrifugal atomizers breakup of the liquid film and droplet formation may occur be-
yond the edges of the cup, at its boundary, or on its surface. Experiments have shown that in the last case the
droplet dispersion becomes more homogeneous. Study of liquid film breakup is also necessary to determine
the minimum liquid flow density in film-type centrifugal devices [1].

The goal of the present study is to determine the critical breakup parameters (liquid film radius of
depth) as functions of the technological parameters.

We will consider the breakup of a laminar isothermal film of an anomolously viscous liquid which obeys
a power-type law on the surface of a curvilinear cup. Experiments have shown that a liquid ridge is formed at
the boundary between the dry and wetted surface areas. We will describe the forces acting on the liquid ridge
at the critical point G using the notation of [2] (Fig. 1). We assume that the ridge has a cylindrical surface with
constant radius of curvature Ry.

Considering the phenomenon of wetting angle hysteresis (i.e., the possibility of short-term rotation ofthe
liquid film surface about the critical point G), we write the equation for the equilibrium state of the ridge

M;+M,+ M, =0, (1)
where
A’IU = USC; (2)
e,
— (] .
M, = — S‘ — 8ds; (3)
o
hy
M, =— 5' paw?r sin o hdh. (4)
0

Assuming that the velocity profile is defined [3, 4] as

we integrate Eq. (3), obtaining

where
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Fig. 1. Liquid film breakup on surface of a rotating cup.
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Considering the geometry of the ridge, we have:
hy = Ry (1 —cosB,); A= hy— R, (1 —cosB);

a = 2R; sin®; dh = — R, sin64df.
Since at h=hy 6=0 and at h= 0 6 = §,, by using Eq. (7) we obtain from Eq. {4)
M, = — .TQRipu)Zr sina,

where

T, = { sin @ — 6, cos 0, — ;_ sin380> .

\

(M

To determine R,. we use the Laplace equation [5], according to which the relationship between excess

pressure beneath the ridge and ridge curvature may be represented in the form

Pr= U/R,;

The excess pressure beneath the ridge may be written as

Pr = Pym~+ Pom + Pome

where
¢
1 (. pv?
Pom= +— ds;
S g 2
hy a
U (et sin o dadi:
Pom = hoj p paw?r sin o dadh;
0 0
. 2
Ppm = h.,p;)r cos ot.

(9)

(10)

(11}

(12)

(13)

Equation (13) is derived from the expression for pressure obtained in [4] by replacing 6, by h, with the
consideration that =0, ¢ = 0 in the stagnant zone within the ridge. Integration of Egs. (11), (12) with use of Egs.

(5), (7) gives:

21 (mr‘LZ.
Pom =P 55 |y g
0, — sin B, cos @,

po’rsino R,.
2 (1 — cos 8y)

Pom =
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Fig. 2. Dimensionless critical radius versus dimensionless éomplex pwaq/
catn=1,K=1.8-10"! N-sec/m?; p=1.23-10° kg/m’; R=12.510"%m; o=
48.7-107° N/m; 6,=1.223 rad; a=7/2 rad, q=(0.55-1.7) .10¢ m®/sec; w=
30-120 rad/sec.

Fig. 3. Dimensionless critical radius versus flow rate and angular veloc-
ity at n=0.77, K=1.57-10"! N*secVm?; »=1.017-10% kg/m?; R=12.5"
10-% m, 6,=1.0248 rad; ¢=53.3-10° N/m; a = /2 rad; 1) F, = f(v) for
1°107% m%sec; 2) T = f(q) for w= 60 rad/sec.

Substituting Eqs. (10), (13)-(14) in Eq. (9), we obtain the Laplace equation in the form

9

Pom + CRr + Ry = , (16)
I
where ¢ = p,,m/Ry; 1= Ppm/Ry. It follows from Eq. (16) that
R R(”“m )—— T _ -0
A (g €+ (17

Considering that in the particular problem considered the range of variation of the technological param-
eters Rppy/o~qpv/oR{ 1, in Eq. (17) we may neglect the second term in comparison to the third as being of
second order smallness. Then

/T o a0 (18)
Re= | i =Tal 8) oo |
where
7}:{ 2 (1 — cosf,) 1/2
sine (B, — sin 8, cos 6;) 4 (1 — cos ;)2 cosa ’

Substituting Eqs. (2), (6), (8), and (18) in Eq. (1), we obtain the moment equation in the form

) 2 3 70,5
o8 — T8 ( ‘1’ ) 62~T4(p;2r) —0, (19)

where
T, = TyT3sina.
Since the second and third terms of Eq. (19) are in the ratio J%We-?(( 1, the second term may be ne-

glected. For the problem under consideration J2~1 and We®®~10%, Here J = pwq/o, while We =pw?R%/ 0 is the

Weber criterion. Then from Eq. (19)
§ = T, (o/00r)"" . (20)

If we neglect the tangential velocity of the liquid (¢ = 0), then to an accuracy of 3%, following [3], the film
thickness will be given by
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Fig. 4. Determination of zone of devia-
tion of critical radius from calculated
value.

(21)

. 1
s [(2rkLy Kg® et
’ 2nn ) pw?r**isina '
Simultaneous solution of Eqs. (20) and (21) makes it possible to determine the breakup radius of the lig-

uid film

- a et 1 2
c= | T8, «, ( pog } o"KR , 29
re [ (6, @, n) e 5 Wel's (22)
where
2n+1\* sing
T(8,, o, n) =
8, 0. ) ( 2nn ) 7!

If necessary, the problem may also be solved without using the above simplifications, by numerical meth-
ods. Equation (22) can then serve as a first approximation.

To verify the theoretically obtained functions, experiments were performed on a plane disk with a 90%
aqueous solution of glycerine {Fig. 2) (Newtonian liquid) and for a 2.5% agueous solution of KMTs-600 (power-
like non~Newtonian liquid, Fig. 3).

The parameters K and n were determined by the two.-capillary method in a constant pressure viscosime-
ter; p, by a densimeter; o, by the ring breakoff method; and 6, by the liquid ascent level when wetting the
specimen of [6].

Since there were significant deviations in breakup radius in each experiment (A = 15-20%) mean arith-
metic values were taken.

As is evident from the curves, the experimental values deviate from the theoretical ones by not more than
25-30%. It is evident from Fig. 3 that the divergence between experiment and theory for small r, reaches 100%.
This is apparently the result of the simplifications and assumptions used, both those as to flow hydrodynamics
and those on liquid film breakup. At small radii these have a greater effect.

To estimate the deviation of the breakup radius from the calculated value, we write the solution of Eqs.
(20), (21) in the following form:

6. (7 )""“‘"’“ _o, S . (23)
]

We then assume that random factors not considered by the theory lead to some oscillation of the ratio 6,/6; by
by an amount #t. This then corresponds to variations Tmax and Tyin (Fig. 4). If we denote the deviation range
by

A= (;max ~7min)/2;cy
and consider that for the slope of the tangent at the critical point we have

1 t

T 2@+, oA

tga,

we then obtain
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A= +2{(2n4-1). (24)
It follows from Eq. (24) that if n =1 and t = £0.03, then A = £0.18. Thus, small oscillations of the ratio 50/60(3%)
can lead to significant deviations of the breakup radius (+18%), which corresponds to the phenomenon observed.

NOTATION

K, n, rhenological constants; p, density; o, surface tension; r, current cup radius; R, maximum cup
radius; rg, critical radius for film breakup; r=f=r/R, dimensionless current radius;r;=rs/R, dimensionless criti-
cal radius; &, 6p, actual and critical film thicknesses; 6, current thickness; Ry, ridge radius; h, ridge
height; h, current ridge height; 6, limiting wetting angle; 8, current angle of tangent to ridge surface; «,
angle between axis of rotation and tangent to cup surface; w, angular velocity of rotation; q, volume liquid fiow
rate; v, and D meridional and tangential velocities; 8 =4v; m/wr, b= 4V¢m/wr, dimensionless velocities; Mg
M, moments of surface and centrifugal forces; My, moment from velocity head; p,., pressure within ridge;
Pym, pressure from velocity head; pwp,, Ppm. pressures from centrifugal force components tangent and nor-
mal to cup surface; A, deviation range of breakup radius from calculated value; ryax, rpyip, limiting devia-

tions of breakup radius; «g, angle of tangent to curve 6,/6, = f(r) at critical point; t, random oscillation of ratio
6/ 6.
¢/ %
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LAMINAR FLOW OF A VISCOUS INCOMPRESSIBLE LIQUID
OVER THE SURFACE OF SOLIDS OF REVOLUTION

A. D. Glinkin and V. A. Rukavishnikov UDC 532.517.2:532.62

The laminar flow of a viscous incompressible liquid over the surface of stationary solids of
revolution is examined for the case of circular inflow of the stream,

Dispersing agents are presently used in industry [1-6] whereby a stream (jet) of viscous liquid spreads
in an axisymmetric thin layer over the surface of stationary solids of revolution of various shapes. Several
works [7-13] have been devoted to the study of such laminar flows. However, the results here were obtained
without regard for the parameters of the inflowing stream, which leads to the appearance of quantities in the
theoretical data whose values can be found only by experiment—a serious deficiency of these researches.

There are studies [14-16] which have overcome this problem.

This article examines the axisymmetric, stable thin-layer flow of a viscous, incompressible, uniform
liquid over the curvilinear surface of solids of revolution in the laminar mode as a result of the inflow of an in-
finite circular stream, with allowance for the working parameters of the latter.

We will examine flow of the liquid in the special system of coordinates I, 1, and 8. The given coordinate
system is orthogonal (Fig. 1).
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